G protein-coupled receptor kinase 2 promotes cardiac hypertrophy
نویسندگان
چکیده
The increase in protein activity and upregulation of G-protein coupled receptor kinase 2 (GRK2) is a hallmark of cardiac stress and heart failure. Inhibition of GRK2 improved cardiac function and survival and diminished cardiac remodeling in various animal heart failure models. The aim of the present study was to investigate the effects of GRK2 on cardiac hypertrophy and dissect potential molecular mechanisms. In mice we observed increased GRK2 mRNA and protein levels following transverse aortic constriction (TAC). Conditional GRK2 knockout mice showed attenuated hypertrophic response with preserved ventricular geometry 6 weeks after TAC operation compared to wild-type animals. In isolated neonatal rat ventricular cardiac myocytes stimulation with angiotensin II and phenylephrine enhanced GRK2 expression leading to enhanced signaling via protein kinase B (PKB or Akt), consecutively inhibiting glycogen synthase kinase 3 beta (GSK3β), such promoting nuclear accumulation and activation of nuclear factor of activated T-cells (NFAT). Cardiac myocyte hypertrophy induced by in vitro GRK2 overexpression increased the cytosolic interaction of GRK2 and phosphoinositide 3-kinase γ (PI3Kγ). Moreover, inhibition of PI3Kγ as well as GRK2 knock down prevented Akt activation resulting in halted NFAT activity and reduced cardiac myocyte hypertrophy. Our data show that enhanced GRK2 expression triggers cardiac hypertrophy by GRK2-PI3Kγ mediated Akt phosphorylation and subsequent inactivation of GSK3β, resulting in enhanced NFAT activity.
منابع مشابه
Phosphoinositide 3-Kinase –Deficient Mice Are Protected From Isoproterenol-Induced Heart Failure
Background—We have recently shown that genetic inactivation of phosphoinositide 3-kinase (PI3K ), the isoform linked to G-protein–coupled receptors, results in increased cardiac contractility with no effect on basal cell size. Signaling via the G-protein–coupled -adrenergic receptors has been implicated in cardiac hypertrophy and heart failure, suggesting that PI3K might play a role in the path...
متن کاملInvolvement of Nuclear Factor- B and Apoptosis Signal-Regulating Kinase 1 in G-Protein–Coupled Receptor Agonist–Induced Cardiomyocyte Hypertrophy
Background—Recently, reactive oxygen species (ROS) have emerged as important molecules in cardiac hypertrophy. However, the ROS-dependent signal transduction mechanism remains to be elucidated. In this study, we examined the role of an ROS-sensitive transcriptional factor, NFB, and a mitogen-activated protein kinase kinase kinase, apoptosis signal-regulating kinase 1 (ASK1), in G-protein–couple...
متن کاملNuclear Translocation of Cardiac G Protein-Coupled Receptor Kinase 5 Downstream of Select Gq-Activating Hypertrophic Ligands Is a Calmodulin-Dependent Process
G protein-Coupled Receptors (GPCRs) kinases (GRKs) play a crucial role in regulating cardiac hypertrophy. Recent data from our lab has shown that, following ventricular pressure overload, GRK5, a primary cardiac GRK, facilitates maladaptive myocyte growth via novel nuclear localization. In the nucleus, GRK5's newly discovered kinase activity on histone deacetylase 5 induces hypertrophic gene tr...
متن کاملmiR-374 promotes myocardial hypertrophy by negatively regulating vascular endothelial growth factor receptor-1 signaling
Vascular endothelial growth factor (VEGF) is an essential cytokine that has functions in the formation of new blood vessels and regression of cardiac hypertrophy. VEGF/VEGF-receptor-1 (VEGFR1) signaling plays a key role in the regression of cardiac hypertrophy, whereas VEGF/VEGFR2 signaling leads to cardiac hypertrophy. In this study, we identified the prohypertrophic role of miR-374 using neon...
متن کاملPhosphoinositide 3-kinase gamma-deficient mice are protected from isoproterenol-induced heart failure.
BACKGROUND We have recently shown that genetic inactivation of phosphoinositide 3-kinase gamma (PI3Kgamma), the isoform linked to G-protein-coupled receptors, results in increased cardiac contractility with no effect on basal cell size. Signaling via the G-protein-coupled beta-adrenergic receptors has been implicated in cardiac hypertrophy and heart failure, suggesting that PI3Kgamma might play...
متن کامل